
Lau Kar Rui - Project Portfolio

Project: iungo
iungo is a desktop address book application used for learning Software Engineering principles. The
user interacts with it using a CLI, and it has a GUI created with JavaFX. It is written in Java, and has
about 6 kLoC.

Code contributed: [Functional code] [Test code]

Enhancement Added: Setting of homepage

External behavior

Start of Extract [from: User Guide] written primarily by original author, with relevant homepage
information by me

Editing a person : edit, e
UNDOABLE

Edits an existing person in the address book.
Editable parameters: name, phone, email, address, homepage, remark, tag
Format: edit INDEX [n/NAME] [p/PHONE] [e/EMAIL] [a/ADDRESS] [h/HOMEPAGE] [re/REMARK] [t/TAG]…

• Edits the person at the specified INDEX. The index refers to the index number shown in the
last person listing. The index must be a positive integer 1, 2, 3, …

• At least one of the optional fields must be provided.

• Existing values will be updated to the input values.

• When editing tags, the existing tags of the person will be removed i.e adding of tags is not
cumulative.

• You can remove all the person’s tags by typing t/ without specifying any tags after it.

• You can reset the homepage to the default homepage by typing h/ without specifying any
URL after it.

NOTE
If the name is edited and the contact did not previously have a custom homepage
set, the default homepage will switch to a Google search of the new name. If there
was a custom homepage set, the homepage will not change

TIP There is also another way to edit a remark of a person; refer to the Remark section

Examples:

• edit 1 p/91234567 e/johndoe@example.com

Edits the phone number and email address of the 1st person to be 91234567 and

1

https://github.com/CS2103AUG2017-F11-B3/main/blob/master/collated/main/karrui.md
https://github.com/CS2103AUG2017-F11-B3/main/blob/master/collated/test/karrui.md

johndoe@example.com respectively.

• e 2 n/Betsy Crower h/http://www.google.com t/

Edits the name of the 2nd person to be Betsy Crower, sets the homepage to be
http://www.google.com, and clears all existing tags.

Adding a person: add, a
UNDOABLE

Adds a person to the address book
Addable parameters: name, phone, email, address, homepage, remark, tag
Format: add n/NAME p/PHONE_NUMBER [e/EMAIL] [a/ADDRESS] [h/HOMEPAGE] [re/REMARK] [t/TAG]…

TIP A person can have any number of tags (including 0)

TIP The EMAIL, ADDRESS, HOMEPAGE, REMARK and TAG parameters are OPTIONAL {since v1.5rc}

TIP There is also another way to add a remark to a person; refer to the Remark section

NOTE
A person will have a default homepage of a Google search of his/her name, if /h was
not included in the add command

NOTE The HOMEPAGE provided should be a complete URL, including the http:// header.

NOTE
Avatars cannot be added with this command, they need to be set separately. Refer to
the Set avatar section

Examples:

• add n/John Doe p/98765432 e/johnd@example.com a/John street, block 123, #01-01
h/http://www.johndoe.com

• add n/Betsy Crowe t/friend a/Newgate Prison p/1234567 t/criminal

• a n/Jane Doe p/87654321 e/janede@example.com

End of Extract

Justification

Previous behaviour of both add and edit did not allow the user to set their homepage to something
more useful.

This implementation now enhances the usability of the application by allowing the user to set
relevant homepages for each individual contact, such as their Facebook or LinkedIn profiles.

2

http://www.google.com

Implementation

Start of Extract [from: Developer Guide]

Setting of homepage for a Person
The mechanism to set a homepage for a specified Person relies on AddCommand and EditCommand.
It supports both the setting and resetting of a homepage. Resetting a homepage returns the
homepage to the default homepage of a Google search of the Person’s full name.

NOTE
Care is also given to make sure the homepage is changed when the name is edited if
the current homepage is the default homepage (i.e. not manually set).

NOTE
If the homepage has been set before, it will not change until it is reset by h/ or a
new homepage is manually set.

AddCommand and EditCommand both checks for the h/ parameter that indicates whether the current
homepage is to be modified.
If h/ is parsed to be empty ("" by AddCommandParser or EditCommandParser, a Person constructor is used
to create the person with the default homepage.
If h/ is a non-empty valid URL (determined by Homepage.isValidHomepage, a different Person
constructor is invoked to create a person with the set homepage.
AddCommandParser code snippet to determine if user’s AddCommand contains h/ parameter:

if (arePrefixesPresent(argMultimap, PREFIX_HOMEPAGE)) {
 Homepage homepage =
ParserUtil.parseHomepage(argMultimap.getValue(PREFIX_HOMEPAGE)).get();
 person = new Person(name, phone, email, address, tagList, homepage);
} else {
 person = new Person(name, phone, email, address, tagList);
}

EditCommand will create an EditPersonDescriptor with the arguments entered, and pass the resulting
EditPersonDescriptor into a method to create the updated Person.
EditCommand.createEditedPerson code snippet to check if homepage has been manually set before:

3

private static Person createEditedPerson(ReadOnlyPerson personToEdit,
EditPersonDescriptor editPersonDescriptor) {
 Homepage originalHomepage = personToEdit.getHomepage();

 Homepage updatedHomepage =
editPersonDescriptor.getHomepage().orElse(personToEdit.getHomepage());

 // ... other logic...

 if (updatedHomepage.value.equals(RESET_HOMEPAGE)) {
 return new Person(updatedName, updatedPhone, updatedEmail, updatedAddress,
updatedTags);
 }
 if (personToEdit.isHomepageManuallySet() ||
!(originalHomepage.toString().equals(updatedHomepage.toString()))) {
 return new Person(updatedName, updatedPhone, updatedEmail, updatedAddress,
updatedTags, updatedHomepage);
 } else {
 return new Person(updatedName, updatedPhone, updatedEmail, updatedAddress,
updatedTags);
 }
}

Design Considerations

Aspect: Implementation of homepage changing when name of contact is changed
Alternative 1 (Current choice): Change homepage to a Google search of the name name when
name is changed if homepage has not been manually set prior
Pros: Consistent behaviour - if name changes but the default homepage was still referring to the old
name, user will be confused.
Cons: New developers will have to take note of the extra Homepage check when enhancing or
refactoring AddCommand or EditCommand
Alternative 2: Homepage will not be changed after creation.
Pros: Less complexity in the code, easier for new developers to handle.
Cons: Results in a less user friendly application.

End of Extract

Enhancement Added: Sort

External behavior

Start of Extract [from: User Guide]

4

Sorting the contact list : sort
UNDOABLE

{since v1.2}
Sorts the contact list in either [a]scending or [d]escending order and shows the list.
Format: sort a or sort d

• The parameters are OPTIONAL. sort on its own will default to a sort in ascending order.

End of Extract

Justification

Previously, the list view of the application would show contacts in the order they were added. For
an address book with many contacts added, sorting would allow the user (who, for some reason,
does not want to use the find command) to be able to view the contact list in alphabetical
ascending/ descending order.

Implementation

Start of Extract [from: Developer Guide]

Sort mechanism
The sort mechanism is facilitated by the SortCommand, which is an UndoableCommand.
SortCommandParser checks for the OPTIONAL a or d parameters, and calls the relevant SortCommand to
sort the internalList backing the address book.

The internalList is sorted using the full name of the contact using Java’s sort.
The following sequence diagrams shows how the sort mechanism works:

5

End of Extract

Enhancement Added: Set avatar

External behavior

Start of Extract [from: User Guide]

Setting an avatar for a contact : setavatar, sa
{since v1.3}
Sets an avatar for a contact referenced by the index number used in the last person listing. If
AVATAR_URL is empty; i.e sa INDEX sa/, the current avatar (if any) will be deleted.
Format: setavatar INDEX sa/[AVATAR_URL]
Alias: sa INDEX sa/[AVATAR_URL]

NOTE
This requires an active Internet connection to work, as the application requires an
URL to retrieve the image.

NOTE
This command cannot be undone, if sa INDEX sa/ is invoked, you will need to add
the avatar again with an URL.

• Sets the avatar for the contact at the specified INDEX.

• The index refers to the index number shown in the most recent listing.

• The index must be a positive integer 1, 2, 3, …

• If AVATAR_URL is empty; i.e "", the avatar will be removed and the default avatar will be
shown

• The image size must not be bigger than 50KB.

6

Examples:

• setavatar 1 sa/https://i.imgur.com/xPHOeWL.png

Sets the avatar of the 1st person listed to be the image as referenced by https://i.imgur.com/
xPHOeWL.png.

End of Extract

Justification

Setting an avatar is a natural extension of an address book application

Implementation

Start of Extract [from: Developer Guide]

Avatar mechanism

Logic and Model implementation

The avatar mechanism is facilitated by the using ImageView in JavaFX to display the avatar in the UI.
The main driver to create an Avatar is handled by SetAvatarCommandParser, which is invoked after
AddressBookParser parses the arguments provided by the user.

The following sequence diagrams shows how the setting of avatar is achieved:

7

https://i.imgur.com/xPHOeWL.png
https://i.imgur.com/xPHOeWL.png

8

The arguments needed are INDEX and AVATAR_URL.
An Avatar object is created using AVATAR_URL before being passed as a parameter into the creation of
the SetAvatarCommand object.

The Avatar class performs a series of validity checks to ensure the URL provided is valid. Validity is
defined by having:

1. A valid URL OR is empty

2. The image must not be larger than 50KB (due to application slowdowns if the file is too big)

SetAvatarCommand also performs a series of checks in order to decide the steps to take before editing
the Person referenced.
Below is the code snippet of SetAvatarCommand for the various checks:

9

 public CommandResult executeUndoableCommand() throws CommandException {
 // ... irrelevent logic ...

 // avatar refers to the avatar object created during the construction of
SetAvatarCommand
 if ("".equals(avatar.path) && !"".equals(personToSetAvatarPath)) { // delete
image from storage
 ProcessImage.removeImageFromStorage(personToSetAvatarPath);
 } else if (!"".equals(personToSetAvatarPath)) { // has a previously set avatar,
remove first before processing
 ProcessImage.removeImageFromStorage(personToSetAvatarPath);
 }
 }

The utility class ProcessImageUtil is used to process images retrieved from the Internet. It contains
methods such as writeImageToStorage(…) and removeImageFromStorage(…) which stores the image
into the DEFAULT_AVATAR_FILE_LOCATION and removes the image respectively.
Below is the code snippet of the write method, which calls a helper method getUniqueFile() to
generate a File with a unique path:

void writeImageToStorage(String path) {
 // ... irrelevant ...

 URL url = new URL(path);
 BufferedImage image = ImageIO.read(url);

 File file = getUniqueFile();
 ImageIO.write(image, "jpg", file);
 logger.info("Image from " + path + " written to to file: " + file.getName());
 return file.getPath().replace('\\', '/');
}

File getUniqueFile() {
 Random random = new Random();
 // random.nextInt() + checking if file exists assures uniqueness of name of
created file
 File file = new File(DEFAULT_AVATAR_FILE_LOCATION + random.nextInt() + ".jpg");
 while (file.exists()) {
 file = new File(DEFAULT_AVATAR_FILE_LOCATION + random.nextInt() + ".jpg");
 }
 return file;
}

As SetAvatarCommand is a Command, removeImageFromStorage(…) deletes the image once invoked.
Below is the code snippet of the remove method:

10

void removeImageFromStorage(String path) {
 File file = new File(path);
 if (file.delete()) {
 logger.info("File at path: " + path + " is deleted");
 } else {
 logger.severe("Failed to delete file at " + path);
 }
}

Storage implementation

AvatarStorage is called during Model initialization to check for the existence of an avatar folder. If
the folder does not exist, the folder will be created to store the avatar images.
Below is the code snippet for the relevant code flow:

private Model initModelManager(Storage storage, UserPrefs userPrefs, AvatarStorage
avatarStorage) {
 // ... other logic ...

 avatarDirectoryPath = userPrefs.getAvatarFileDirectoryPath();
 if (!new File(avatarDirectoryPath).exists()) {
 logger.info("Directory not found. Will be attempting to create new
directory");
 avatarStorage.createDirectory(avatarDirectoryPath);
 }
 // ... other logic ...
}

Ui implementation

The PersonCard is updated via the bindListeners(). The loose sequence diagram is displayed below:

11

Below is a more in-depth look at initImage():

/**
 * Binds the correct image to the person.
 * If url is "", default display picture will be assigned, else image from URL will be
assigned
 */
private void initImage(ReadOnlyPerson person) {
 String path = person.getAvatar().toString();
 Image image;
 if (!"".equals(path)) { // not default image
 File file = new File(path);
 image = new Image(file.toURI().toString());
 avatar.setImage(image);
 avatar.setFitHeight(90);
 avatar.setPreserveRatio(true);
 avatar.setCache(true);
 }
}

Design Considerations

Aspect: Saving of image from URL to local disk
Alternative 1 (Current choice): File is saved during construction of Avatar in SetAvatarCommand,
before the Avatar is set to a Person
Pros: Filepath (not URL) of avatar class will be ascertained during binding to editedPerson
Cons: New developers might find it hard to follow the sequence
Alternative 2: Only save file after Avatar has been assigned to Person, assign URL as path when
assigning before file is saved.

12

Pros: Easier for developers to follow the sequence flow
Cons: Possibility of program crashing (NullPointerException) if URL is added and Internet
connection is disrupted before file creation is invoked.

Aspect: Image source
Alternative 1 (Current choice): Only accept image URL from the Internet
Pros: Easy for user to input source; Check guarantees validity of image from "HEAD" request
Cons: Requires internet connection.
Alternative 2: Accept images from user’s local disk in addition from the Internet
Pros: Natural extension of a function to set avatar.
Cons: Difficult for user to input source; difficulty in writing code to ascertain if file entered is
entered.

End of Extract

Enhancement Added: Recent contacts

External behavior

Start of Extract [from: User Guide]

Display recently searched contacts : recent, rc
{since v1.4)
Shows a list of all contacts that was returned by find command since application was started.
Format: recent

End of Extract

Justification

Finding recently searched for contacts is a natural extension of an address book application,
provides convenience to user.

Implementation

Start of Extract [from: Developer Guide]

13

Recent command mechanism
RecentCommand uses a backing list from the FindHistory class to create predicates on which the Model
will filter on and display to the user.
FindHistory is implemented with a LinkedList which is updated when relevant commands change
persons returned by FindCommand.

When FindCommand is invoked, the LogicManager adds the entired FilteredList into the LinkedList in
FindHistory.

When EditCommand is invoked, the set method in FindHistory is invoked to replace the old Person
with the edited Person.

The code snippet for the set method follows:

14

/**
* Changes {@code person} to {@code newPerson}
*/
public void set(ReadOnlyPerson person, ReadOnlyPerson newPerson) {
 if (userFindHistory.contains(person)) {
 userFindHistory.set(userFindHistory.indexOf(person), newPerson);
 }
}

When DeleteCommand is invoked, the deletePerson method in FindHistory is invoked to remove the
person from the LinkedList.

A snapshot of the the LinkedList is also saved into previousFindHistory when an UndoableCommand is
invoked, to preserve the changes in the backing list.

Design Considerations

Aspect: Order of list view to show to user
Alternative 1: Shows the list reverse order of persons returned by FindCommand (similar to
HistoryCommand)
Pros: Intuitive for user, better UX
Cons: Requires an additional hook to Model to swap between two lists (addressbook and
findhistory), additional complexity and chance of regressions
Alternative 2 (Current choice): Shows the list in current order of addressbook backing list.
Pros: Follows design logic of all commands that shows the list to user, allowing new developers to
easily understand implementation.
Cons: Worse UX.

Aspect: Data structure to store FindHistory backing list
Alternative 1 (Current choice): LinkedList
Pros: Preserves order, fast add, able to use set to preserve ordering when mutating elements. Good
for future implementations (if any) of returning the list in order user searched for contacts.
Cons: Slightly slower than competition when traversing and deleting.
Alternative 2: LinkedHashMap or LinkedHashSet

15

Pros: Keeps order, faster than LinkedList
Cons: Unable to use set, which is used when user edits a person.

End of Extract

Enhancement Added: Optional add command

External behavior

Start of Extract [from: User Guide] written by original author as my enhancement is just a
modification of the method

Adding a person: add, a
UNDOABLE

Adds a person to the address book
Addable parameters: name, phone, email, address, homepage, remark, tag
Format: add n/NAME p/PHONE_NUMBER [e/EMAIL] [a/ADDRESS] [h/HOMEPAGE] [re/REMARK] [t/TAG]…

TIP A person can have any number of tags (including 0)

TIP The EMAIL, ADDRESS, HOMEPAGE, REMARK and TAG parameters are OPTIONAL {since v1.5rc}

TIP There is also another way to add a remark to a person; refer to the Remark section

NOTE
A person will have a default homepage of a Google search of his/her name, if /h was
not included in the add command

NOTE The HOMEPAGE provided should be a complete URL, including the http:// header.

NOTE
Avatars cannot be added with this command, they need to be set separately. Refer to
the Set avatar section

Examples:

• add n/John Doe p/98765432 e/johnd@example.com a/John street, block 123, #01-01
h/http://www.johndoe.com

• add n/Betsy Crowe t/friend a/Newgate Prison p/1234567 t/criminal

• a n/Jane Doe p/87654321 e/janede@example.com

End of Extract

16

Justification

User might not always have all the details of the contact he/she wants to add. Only the name and
phone number is compulsory.

Implementation

Start of Extract [from: Developer Guide]

Optional Add mechanism
The enhancement is based on the existing AddCommandParser, with a more relaxed restriction of only
the Name and Phone fields being mandatory.

The relevant modifications are as follows:

public AddCommand parse(String args) throws ParseException {
 // ... other logic ...
 // only name and phone are compulsory
 if (!arePrefixesPresent(argMultimap, PREFIX_NAME, PREFIX_PHONE)) {
 throw new ParseException(String.format(MESSAGE_INVALID_COMMAND_FORMAT,
AddCommand.MESSAGE_USAGE));
 }
 try {
 Name name = ParserUtil.parseName(argMultimap.getValue(PREFIX_NAME)).get();
 Phone phone = ParserUtil.parsePhone(argMultimap.getValue(PREFIX_PHONE)).get();
 Email email =
ParserUtil.parseEmail(ParserUtil.parseValues(argMultimap.getValue(PREFIX_EMAIL))).get(
);
 Address address =
ParserUtil.parseAddress(ParserUtil.parseValues(argMultimap.getValue(PREFIX_ADDRESS))).
get();
 Set<Tag> tagList = ParserUtil.parseTags(argMultimap.getAllValues(PREFIX_TAG));
 // ... other logic ...
 return new AddCommand(person);
 } catch (IllegalValueException ive) {
 throw new ParseException(ive.getMessage(), ive);
 }
}

parse() utilizes ParserUtil.parseValues(…) to return an empty string if no such parameters were
entered by the user, as seen below:

public static Optional<String> parseValues(Optional<String> value) {
 return Optional.of(value.orElse(STRING_IF_EMPTY));
}

17

The relevant parameters are then passed to create a Person object.

End of Extract

Other contributions

iungo

• Wrote user stories

• Wrote SampleData.xml and TestScript.adoc (Pull requests #92)

Volunteering own features for reuse

• Recent command: [forum post]

• Sort functionality: [forum post]

• Avatar command: [forum post]

Helped in finding bugs

• Bug discovered in AB4: [forum post]

• Bugs discovered in Planno: [issues page]

Helping others with issues

• Posts: [issues page]

18

https://github.com/CS2103AUG2017-F11-B3/main/pull/92
https://github.com/nus-cs2103-AY1718S1/forum/issues/168
https://github.com/nus-cs2103-AY1718S1/forum/issues/117
https://github.com/nus-cs2103-AY1718S1/forum/issues/120#issuecomment-339020868
https://github.com/se-edu/addressbook-level4/issues/727
https://github.com/CS2103AUG2017-W14-B4/main/issues/created_by/karrui
https://github.com/nus-cs2103-AY1718S1/forum/issues?utf8=%E2%9C%93&q=is%3Aissue%20commenter%3Akarrui

	Lau Kar Rui - Project Portfolio
	Project: iungo
	Enhancement Added: Setting of homepage
	Editing a person : edit, e
	Adding a person: add, a
	Setting of homepage for a Person
	Enhancement Added: Sort
	Sorting the contact list : sort
	Sort mechanism
	Enhancement Added: Set avatar
	Setting an avatar for a contact : setavatar, sa
	Avatar mechanism
	Enhancement Added: Recent contacts
	Display recently searched contacts : recent, rc
	Recent command mechanism
	Enhancement Added: Optional add command
	Adding a person: add, a
	Optional Add mechanism
	Other contributions

